If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7k2 + 9k + -12 = 0 Reorder the terms: -12 + 9k + 7k2 = 0 Solving -12 + 9k + 7k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -1.714285714 + 1.285714286k + k2 = 0 Move the constant term to the right: Add '1.714285714' to each side of the equation. -1.714285714 + 1.285714286k + 1.714285714 + k2 = 0 + 1.714285714 Reorder the terms: -1.714285714 + 1.714285714 + 1.285714286k + k2 = 0 + 1.714285714 Combine like terms: -1.714285714 + 1.714285714 = 0.000000000 0.000000000 + 1.285714286k + k2 = 0 + 1.714285714 1.285714286k + k2 = 0 + 1.714285714 Combine like terms: 0 + 1.714285714 = 1.714285714 1.285714286k + k2 = 1.714285714 The k term is 1.285714286k. Take half its coefficient (0.642857143). Square it (0.4132653063) and add it to both sides. Add '0.4132653063' to each side of the equation. 1.285714286k + 0.4132653063 + k2 = 1.714285714 + 0.4132653063 Reorder the terms: 0.4132653063 + 1.285714286k + k2 = 1.714285714 + 0.4132653063 Combine like terms: 1.714285714 + 0.4132653063 = 2.1275510203 0.4132653063 + 1.285714286k + k2 = 2.1275510203 Factor a perfect square on the left side: (k + 0.642857143)(k + 0.642857143) = 2.1275510203 Calculate the square root of the right side: 1.458612704 Break this problem into two subproblems by setting (k + 0.642857143) equal to 1.458612704 and -1.458612704.Subproblem 1
k + 0.642857143 = 1.458612704 Simplifying k + 0.642857143 = 1.458612704 Reorder the terms: 0.642857143 + k = 1.458612704 Solving 0.642857143 + k = 1.458612704 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + k = 1.458612704 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + k = 1.458612704 + -0.642857143 k = 1.458612704 + -0.642857143 Combine like terms: 1.458612704 + -0.642857143 = 0.815755561 k = 0.815755561 Simplifying k = 0.815755561Subproblem 2
k + 0.642857143 = -1.458612704 Simplifying k + 0.642857143 = -1.458612704 Reorder the terms: 0.642857143 + k = -1.458612704 Solving 0.642857143 + k = -1.458612704 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.642857143' to each side of the equation. 0.642857143 + -0.642857143 + k = -1.458612704 + -0.642857143 Combine like terms: 0.642857143 + -0.642857143 = 0.000000000 0.000000000 + k = -1.458612704 + -0.642857143 k = -1.458612704 + -0.642857143 Combine like terms: -1.458612704 + -0.642857143 = -2.101469847 k = -2.101469847 Simplifying k = -2.101469847Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.815755561, -2.101469847}
| 18-8x-12x-6-6-30x+12=16x+12-9x-9 | | p(5+9)=24+32 | | 14x=5+3x | | 18x-2=2x+6 | | 14x=5x+3 | | -1x+20=3x-5 | | 100=6x+5(2x+4) | | 4x^2-y^2-40x+20y-144=0 | | 4x^3-15x^2-6x+13=0 | | (3k-6)(3k+12)=4k-8k+12 | | 2(q-8)=12 | | x+(x+21)=76 | | 24y=-72 | | 7x+24+5x+56=180 | | 5x-8+2x=-3x+2 | | x-(x-21)=76 | | 3(3-v)-6v=15 | | 300x+12200=21000-250x | | -9+n=n-22 | | 8s-22=-16+7s | | 4z-3=3z+4 | | 7x=20x-7 | | x-8*4=5 | | -3x-(-3x+21)=-21 | | 3(x-4)+5=5 | | 25+8x=-15 | | 0.08n=75 | | 4(x-2)=-2+12+5x | | x+21=76 | | 10t+2(t+2)=46 | | 5x+y=84 | | 30=-5d-9 |